233 research outputs found

    Samarium Magnetism Studied on SmPd2Al3 Single Crystal

    Full text link
    In this paper, specific features of Sm magnetism in an intermetallic compound have been studied. For this purpose, a high-quality single crystal of SmPd2Al3 was grown and subjected to detailed measurements of specific heat, magnetization, ac susceptibility, and electrical resistivity with respect to temperature and a magnetic field applied along the principal crystallographic directions. SmPd2Al3 magnetism was found to be strongly anisotropic with the easy-magnetization direction along the c axis where the main magnetic features are concentrated. The a-axis response remains weak, paramagneticlike, even in the magnetically ordered state. Ferromagnetism with TC=12.4 K has been indicated by all the measured physical properties. At lower temperatures, three successive order-order phase transitions have been observed on the temperature dependence of the specific heat as three anomalies: at 3.4, 3.9, and 4.4 K, respectively. The low-temperature magnetization data can be understood within a scenario that considers the antiferromagnetic ground state as being gradually destroyed through a series of four metamagnetic transitions at 0.03, 0.35, 0.5, and 0.75 T, as detected in the 1.8 K magnetization data. The experimental data are discussed together with the results of electronic-structure and crystal-field calculations from first principles, which were performed as an important part of the study for comprehension and explanation of the observed behavior of the SmPd2Al3 compound

    Active Detectors for Plasma Soft X-Ray Detection at PALS

    Get PDF
    This paper summarizes the work carried out for an experimental study of low-energy nuclear excitation by laser-produced plasma at the PALS Prague laser facility. We describe the adaptation and shielding of single-quantum active radiation detectors developed at IEAP CTU Prague to facilitate their operation inside the laser interaction chamber in the vicinity of the plasma target. The goal of this effort is direct real-time single-quantum detection of plasma soft X-ray radiation with energy above a few keV and subsequent identification of the decay of the excited nuclear states via low-energy gamma rays in a highly radiative environment with strong electromagnetic interference

    Positron annihilation spectroscopy study of radiation-induced defects in W and Fe irradiated with neutrons with different spectra

    Get PDF
    The paper presents new knowledge on primary defect formation in tungsten (W) and iron (Fe) irradiated by fission and high-energy neutrons at near-room temperature. Using a well-established method of positron-annihilation lifetime-spectroscopy (PALS), it was found that irradiation of W in the fission reactor and by high-energy neutrons from the p(35 MeV)-Be generator leads to the formation of small radiation-induced vacancy clusters with comparable mean size. In the case of Fe, smaller mean size of primary radiation-induced vacancy clusters was measured after irradiation with fission neutrons compared to irradiation with high-energy neutrons from the p(35 MeV)-Be generator. It was found that one of the reasons of the formation of the larger size of the defects with lower density in Fe is lower flux in the case of irradiation with high-energy neutrons from the p(35 MeV)-Be source. The second reason is enhanced defect agglomeration and recombination within the energetic displacement cascade at high energy primary knock-on-atoms (PKAs). This is consistent with the concept of the athermal recombination corrected (arc-dpa) model, although the measured dpa cross-section of both fission neutrons and wide-spectrum high-energy neutrons in W is between the conventional Norgett–Robinson–Torrens (NRT-dpa) and arc-dpa predictions. This means that the physics of the primary radiation effects in materials is still not fully known and requires further study through a combination of modeling and experimental efforts. The present data serve as a basis for the development of an improved concept of the displacement process

    COMPARISON OF METHODS TO MAP SELECTED TRAFFIC MARKINGS ON FIRST CLASS ROADS IN THE CZECH REPUBLIC

    Get PDF
    The article presents conclusions of a comprehensive analysis of pilot data collection using four mapping methods. To validate mapping methods and procedures, we selected three ten-kilometer sections of the first class roads with different geomorphological, vegetative and transportation properties. All sections were measured by aerial photogrammetry using GSD = 4 cm, mobile laser scanning equipment linked with cameras, by geodetic surveying methods, and one section was also measured by UAV. The tested methods mapped selected features of vertical and horizontal traffic markings on the first class roads. The traffic marking measuring sets were analyzed from the perspectives of personnel, time, data, costs, and technological and organizational aspects. All the mapping methods were verified as mentioned above starting from work preparation phase, its terrain realization, captured data processing and detailed analysis, concluding with stating the advantages and disadvantages for each mapping method. One of the analysis outputs was proposals to change and refine road administrator’s regulations. The mapping methods were compared with geodetic measurements. Analyses were also carried out in the context of creating digital data in 3D for the realization of BIM (Building Information Modeling) digital data in connection with the concept of the European Parliament and Council Directive 2014/24 / EU on Public Procurement, and Czech Government Decree 682 on the Concept of Implementation of the BIM Method in the Czech Republic of 25 September 2017 and Decree 958 of the Government of the Czech Republic of 2 November 2016 on the importance of BIM for the construction engineering and proposal of further steps to introduce it in the Czech Republic

    Characterization of a 5 mm thick CZT-Timepix3 pixel detector for energy-dispersive γ -ray and particle tracking

    Get PDF
    The present manuscript describes a comprehensive characterization of a novel highly segmented 5 mm CZT sensor attached to Timepix3. First, the sensor’s IV curve was measured and basic sensor characterization was done with laboratory γ-radiation sources. The sensor resistivity was determined to be (0.155± 0.02) GOhm · cm. The sensor showed decent homogeneity, both for the per-pixel count rate and electron mobility-lifetime product μ e τ e. The latter was measured to be μeτe¯ = 1.3 × 10−3 cm2/V with a standard deviation σ = 0.4 × 10−3 cm2/V describing the dispersion of values for different pixels. The basic sensor characterization is complemented by measurements at grazing angle in a 120 GeV/c at the CERN’s Super Proton Synchrotron. The penetrating nature of these particles together with the pixelation of the sensor allows for a determination of the charge collection efficiency (CCE), as well as charge carrier drift properties (drift times, lateral charge cloud expansion) as a function of the interaction depths in the sensor. While CCE drops by 30%–40% towards the cathode side of the sensor, from the drift time dependency on interaction depth, the electron mobility μ e was extracted to be (944.8 ± 1.3) cm2/V/s and τ e = (1.38 ± 0.31) μs. The spectroscopic performance was assessed in photon fields and extracted from energy loss spectra measured at different angles in the pion beam. While at photon energies below 120 keV incomplete charge collection leads to an underestimation of the photon energy when irradiated from the front-side, at higher energies the relative energy resolution was found to be ∼4.5%, while a relative energy resolution of ∼7.5% was found for the particle energy loss spectra. It is shown that the drift time information can be used to reconstruct particle interactions in the sensor in 3D, providing a spatial resolution of σ xyz = 241 μm within the sensor volume and a particle trajectory measurement precision Δxyz = 100 μm, at a distance of 1 m from the sensor. We demonstrate by measurement with a 22Na source, that the energy resolution combined with the 3D reconstruction allows for detection of γ-ray source location and polarity using Compton scattering within the sensor (Compton camera and scatter polarimeter)

    Visual ecology of aphids – a critical review on the role of colours in host finding

    Get PDF
    We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms. Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region. We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours that are not likely to hold. Finally we also discuss the implications for developing and optimising strategies of aphid control and monitoring
    corecore